

κ в D a° 65° b° н h g° Ν 86° f° Μ d° 56° 157° L e° c° $\overline{AB} \| \overline{CD} \| \overline{EF} \| \overline{GH}$ 67° $m \angle MPO = 90^{\circ}$ Ο

Mini Lesson

Basic Rigid Motion:

Explaining how to transform figures without the benefit of a coordinate plane can be difficult without some important vocabulary.

Let's review:

of ___

The word transformation has a specific meaning in geometry. A transformation F of the plane is a function that assigns to each point P of the plane a unique point F(P) in the plane.

Transformations that preserve lengths of segments and measures of angles are called _____

_____. (Distance preserving and angle preserving)

A dilation is an example of a transformation that preserves ______ measures but not the lengths of segments. Currently, we will be working with only rigid transformations.

We call a figure that is about to undergo a transformation the _____ while the figure that has undergone the transformation is called the ______.

Pre-image	in	nage
R	8	Is a
R	Я	Is a
D	D	
Γ	Γ	Is a
A line of reflection acts as the	the pre-image wi	of eachof each
image. When we rotate an image we	rotate	
The point of the intersection of two of	perpendicular bis	sectors is the

Let's find the center of rotation:

Ex 1:

Steps:

- a. Draw a segment connecting points A and A'.
- b. Using a compass and straightedge, find the perpendicular bisector of this segment.
- c. Draw a segment connecting points B and B'.
- d. Find the perpendicular bisector of this segment.
- e. The point of intersection of the two perpendicular bisectors is the center of rotation. Label this point P.

GEOMETRY

Work Time: Find the center of rotation

Ex 1:

Ex 2:

GEOMETRY

Name _____

Classwork/Homework

Lesson 14: Transformations/Rigid Motions

Given: $m \angle CDE = m \angle BAC$

Prove: $m \angle DEC = m \angle ABC$

Statement	Reason

2. Reflect each.

a. $\triangle ABC$ with vertices A(-3, 2), B(0, 1),and C(-2, -3) in the line y = x

		- 1	y		
-					-
-		0			X
+		0			X
•		0			X
-		0			X

b. trapezoid *DEFG* with vertices D(0, -3), E(1, 3), F(3, 3), and G(4, -3) in the y-axis

		1	y		
-		0			X
		0			X
		0			X
-		0			X